matura sierpień 2015 zad 5

W ROKU SZKOLNYM 2014/2015 FORMUŁA OD 2015 („NOWA MATURA”) MATEMATYKA POZIOM PODSTAWOWY MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZE MMA-P1 SIERPIEŃ 2015 Wszystkie arkusze maturalne znajdziesz na stronie: arkuszematuralne.pl
Matura 2015 Repetytorium; Matura 2015 Practice Tests; Skills for Matura; Ukraine Culture Clips; Matura 2023 Practice Tests PR: Test 5 Zad. 1 Str. 44 Tekst 2. 23
Szybka nawigacja do zadania numer: 5 10 15 20 25 30 .Jeśli \(a=\frac{3}{2}\) i \(b=2\), to wartość wyrażenia \(\frac{a\cdot b}{a+b}\) jest równa A.\( \frac{2}{3} \) B.\( 1 \) C.\( \frac{6}{7} \) D.\( \frac{27}{6} \) CDany jest prostokąt o wymiarach \(40 \text{ cm} \times 100 \text{ cm}\). Jeżeli każdy z dłuższych boków tego prostokąta wydłużymy o \(20\%\), a każdy z krótszych boków skrócimy o \(20\%\), to w wyniku obu przekształceń pole tego prostokąta się o \( 8\% \) się o \( 4\% \) się o \( 8\% \) się o \( 4\% \) DLiczba \(\frac{9^5\cdot 5^9}{45^5}\) jest równa A.\( 45^{40} \) B.\( 45^9 \) C.\( 9^4 \) D.\( 5^4 \) DLiczba \(\sqrt{\frac{9}{7}}+\sqrt{\frac{7}{9}}\) jest równa A.\( \sqrt{\frac{16}{63}} \) B.\( \frac{16}{3\sqrt{7}} \) C.\( 1 \) D.\( \frac{3+\sqrt{7}}{3\sqrt{7}} \) BWartość wyrażenia \(\log_50{,}04-\frac{1}{2}\log_{25}1\) jest równa A.\( -3 \) B.\( -2\frac{1}{4} \) C.\( -2 \) D.\( 0 \) CWartość wyrażenia \((a+5)^2\) jest większa od wartości wyrażenia \((a^2+10a)\) o A.\( 50 \) B.\( 10 \) C.\( 5 \) D.\( 25 \) DNa jednym z poniższych rysunków przedstawiono interpretację geometryczną układu równań \[\begin{cases} x+3y=-5 \\ 3x-2y=-4 \end{cases} \] Wskaż ten rysunek. ANajmniejszą liczbą całkowitą spełniającą nierówność \(2(x − 2) \le 4(x −1)+1\) jest A.\( -2 \) B.\( -1 \) C.\( 0 \) D.\( 1 \) CRozwiązaniem równania \(x^2(x +1) = x^2−8\) jest A.\( -9 \) B.\( -2 \) C.\( 2 \) D.\( 7 \) BFunkcja \(f\) jest określona wzorem \(f(x)=\frac{2x-8}{x}\) dla każdej liczby rzeczywistej \(x \ne 0\). Wówczas wartość funkcji \(f(\sqrt{2})\) jest równa A.\( 2-4\sqrt{2} \) B.\( 1-2\sqrt{2} \) C.\( 1+2\sqrt{2} \) D.\( 2+4\sqrt{2} \) AParabola o wierzchołku \(W = (−3, 5)\) i ramionach skierowanych w dół może być wykresem funkcji określonej wzorem A.\( y=2\cdot (x+3)^2+5 \) B.\( y=-2\cdot (x-3)^2+5 \) C.\( y=-2\cdot (x+3)^2+5 \) D.\( y=-2\cdot (x-3)^2-5 \) CWykres funkcji liniowej \(y = 2x − 3\) przecina oś \(Oy\) w punkcie o współrzędnych A.\( (0,-3) \) B.\( (-3,0) \) C.\( (0,2) \) D.\( (0,3) \) AWierzchołek paraboli będącej wykresem funkcji kwadratowej \(y = f (x)\) ma współrzędne \((2, 2)\). Wówczas wierzchołek paraboli będącej wykresem funkcji \(g(x) = f(x + 2)\) ma współrzędne A.\( (4,2) \) B.\( (0,2) \) C.\( (2,0) \) D.\( (2,4) \) BWszystkie dwucyfrowe liczby naturalne podzielne przez \(7\) tworzą rosnący ciąg arytmetyczny. Dwunastym wyrazem tego ciągu jest liczba A.\( 77 \) B.\( 84 \) C.\( 91 \) D.\( 98 \) CCiąg liczbowy określony jest wzorem \(a_n=\frac{2^n-1}{2^n+1}\), dla \(n\ge 1\). Piąty wyraz tego ciągu jest równy A.\( -1 \) B.\( \frac{31}{33} \) C.\( \frac{9}{11} \) D.\( 1 \) BSinus kąta ostrego \(\alpha \) jest równy \(\frac{3}{4}\). Wówczas A.\( \cos \alpha =\frac{1}{4} \) B.\( \cos \alpha =\frac{\sqrt{7}}{4} \) C.\( \cos \alpha =\frac{7}{16} \) D.\( \cos \alpha =\frac{\sqrt{13}}{16} \) BW trójkącie prostokątnym o długościach przyprostokątnych \(2\) i \(5\) cosinus większego z kątów ostrych jest równy A.\( \frac{5}{2} \) B.\( \frac{2}{5} \) C.\( \frac{2}{\sqrt{29}} \) D.\( \frac{5}{\sqrt{29}} \) CPole rombu o boku \(6\) i kącie rozwartym \(150^\circ \) jest równe A.\( 18\sqrt{2} \) B.\( 18 \) C.\( 36\sqrt{2} \) D.\( 36 \) BW okręgu o środku \(O\) dany jest kąt o mierze \(50^\circ \), zaznaczony na rysunku. Miara kąta oznaczonego na rysunku literą \(\alpha \) jest równa A.\( 40^\circ \) B.\( 50^\circ \) C.\( 20^\circ \) D.\( 25^\circ \) AWspółczynnik kierunkowy prostej, na której leżą punkty \(A = (−4,3)\) oraz \(B = (8,7)\), jest równy A.\( a=3 \) B.\( a=-1 \) C.\( a=\frac{5}{6} \) D.\( a=\frac{1}{3} \) DPunkt \(S = (2,−5)\) jest środkiem odcinka \(AB\), gdzie \(A = (−4,3)\) i \(B = (8,b)\). Wtedy A.\( b=-13 \) B.\( b=-2 \) C.\( b=-1 \) D.\( b=6 \) ADany jest trójkąt prostokątny o długościach boków \(a, b, c\), gdzie \(a \lt b \lt c\). Obracając ten trójkąt wokół prostej zawierającej dłuższą przyprostokątną o kąt \(360^\circ \) otrzymujemy bryłę, której objętość jest równa A.\( V=\frac{1}{3}a^2b\pi \) B.\( V=a^2b\pi \) C.\( V=\frac{1}{3}b^2a\pi \) D.\( V=a^2\pi +\pi ac \) APrzekątna przekroju osiowego walca, którego promień podstawy jest równy \(4\) i wysokość jest równa \(6,\) ma długość A.\( \sqrt{10} \) B.\( \sqrt{20} \) C.\( \sqrt{52} \) D.\( 10 \) DW grupie jest \(15\) kobiet i \(18\) mężczyzn. Losujemy jedną osobę z tej grupy. Prawdopodobieństwo tego, że będzie to kobieta, jest równe A.\( \frac{1}{15} \) B.\( \frac{1}{33} \) C.\( \frac{15}{33} \) D.\( \frac{15}{18} \) CIle jest wszystkich liczb czterocyfrowych, większych od \(3000\), utworzonych wyłącznie z cyfr \(1, 2, 3\), przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane? A.\( 3 \) B.\( 6 \) C.\( 9 \) D.\( 27 \) DRozwiąż równanie \(\frac{2x-4}{x}=\frac{x}{2x-4}\), gdzie \(x\ne 0\) i \(x\ne 2\).\(x=\frac{4}{3}\) lub \(x=4\)Mamy dwa pudełka: w pierwszym znajduje się \(6\) kul ponumerowanych kolejnymi liczbami od \(1\) do \(6\), a w drugim – \(8\) kul ponumerowanych kolejnymi liczbami od \(1\) do \(8\). Losujemy po jednej kuli z każdego pudełka i tworzymy liczbę dwucyfrową w ten sposób, że numer kuli wylosowanej z pierwszego pudełka jest cyfrą dziesiątek, a numer kuli wylosowanej z drugiego – cyfrą jedności tej liczby. Oblicz prawdopodobieństwo, że utworzona liczba jest podzielna przez \(11\).\(\frac{1}{8}\)Rozwiąż nierówność \(20x \ge 4x^2 + 24\).\(x\in \langle 2;3\rangle \)Kąt \(\alpha \) jest ostry i spełnia równość \(\operatorname{tg} \alpha +\frac{1}{\operatorname{tg} \alpha }=\frac{7}{2}\). Oblicz wartość wyrażenia \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{7}\)Wykaż, że dla wszystkich nieujemnych liczb rzeczywistych \(x\), \(y\) prawdziwa jest nierówność \(x^3 + y^3 \ge x^2y + xy^2\).W prostokącie \(ABCD\) punkt \(P\) jest środkiem boku \(BC\), a punkt \(R\) jest środkiem boku \(CD\). Wykaż, że pole trójkąta \(APR\) jest równe sumie pól trójkątów \(ADR\) oraz \(PCR\). Wyznacz równanie osi symetrii trójkąta o wierzchołkach \(A = (−2, 2)\), \(B = (6, − 2)\), \(C = (10,6)\).\(y=-3x+16\)Podstawą ostrosłupa \(ABCDS\) jest prostokąt, którego boki pozostają w stosunku \(3 : 4\), a pole jest równe \(192\) (zobacz rysunek). Punkt \(E\) jest wyznaczony przez przecinające się przekątne podstawy, a odcinek \(SE\) jest wysokością ostrosłupa. Każda krawędź boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem \(30^\circ\). Oblicz objętość ostrosłupa. \(V=\frac{640\sqrt{3}}{3}\)Funkcja kwadratowa \(f\) określona jest wzorem \(f(x) = ax^2 + bx + c\). Zbiorem rozwiązań nierówności \(f(x) \gt 0\) jest przedział \((0,12)\). Największa wartość funkcji \(f\) jest równa \(9\). Oblicz współczynniki \(a\), \(b\) i \(c\) funkcji \(f\).\(a=-\frac{1}{4}\), \(b=3\), \(c=0\)
\n \nmatura sierpień 2015 zad 5
http://akademia-matematyki.edu.pl/ Link do kursu: http://kurs-maturalny-warszawa.pl/?p=285Wykaż, że trójkąt o wierzchołkach A = (3,8) , B = (1, 2) , C = (6,7
Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura sierpień 2015 zadanie 5 Wartość wyrażenia log(5)0,04−12log(25)1 jest równaWartość wyrażenia log(5)0,04−12log(25)1 jest równaChcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura sierpień 2015 zadanie 6 Wartość wyrażenia (a+5)2 jest większa od wartości wyrażenia (a2+10a) oNastępny wpis Matura sierpień 2015 zadanie 4 Liczba √9/7+√7/9 jest równa
Matura matematyka 2017 sierpien poprawkowa podstawowa Author: arkusze.pl Subject: Matura matematyka 2017 sierpien poprawkowa podstawowa Keywords: arkusz; Matura matematyka 2017 sierpien poprawkowa podstawowa Created Date: 7/21/2017 9:34:28 AM
Matura poprawkowa 2015 z matematyki - ARKUSZ [STARA MATURA] MATURA POPRAWKOWA 2015. Poprawkę z matury 2015 postanowiło pisać ponad 6 tys. małopolskich maturzystów. Pisemne egzaminy poprawkowe rozpoczęły się we wtorek o godz pisemny można poprawiać tylko z jednego przedmiotu - jeśli poprawki wymaga więcej przedmiotów, uczeń nie zdaje egzaminu dojrzałości w ogóle i może do niego podejść dopiero w przyszłym ODPOWIEDZI matury poprawkowej 2015 z matematyki [STARA MATURA]Zadanie 1 - AZadanie 2 - BZadanie 3 - AZadanie 4 - DZadanie 5 - BZadanie 6 - BZadanie 7 - DZadanie 8 - AZadanie 9 - AZadanie 10 - CZadanie 11 - DZadanie 12 - BZadanie 13 - CZadanie 14 - CZadanie 15 - DZadanie 16 - DZadanie 17 - BZadanie 18 - AZadanie 19 - CZadanie 20 - AZadanie 21 - CZadanie 22 - CZadanie 23 - BZadanie 24 - DZadanie 25 - BSugerowane ODPOWIEDZI matury poprawkowej 2015 z matematyki [NOWA MATURA]Zadanie 1 - CZadanie 2 - DZadanie 3 - DZadanie 4 - BZadanie 5 - CZadanie 6 - DZadanie 7 - AZadanie 8 - CZadanie 9 - BZadanie 10 - AZadanie 11 - CZadanie 12 - AZadanie 13 - BZadanie 14 - CZadanie 15 - BZadanie 16 - BZadanie 17 - CZadanie 18 - BZadanie 19 - AZadanie 20 - DZadanie 21 - AZadanie 22 - AZadanie 23 - DZadanie 24 - CZadanie 25 - DWIDEO: Poprawki maturPisemne egzaminy poprawkowe rozpoczęły się we wtorek o godz 9. Egzaminy ustne zaczęły się w poniedziałek i potrwają do 28 sierpnia. Wyniki maturalnej poprawki będą ogłoszone 11 że w tym roku maturę w Małopolsce zdało 77 proc. uczniów, co stanowi najwyższy odsetek w kraju. Wśród nich najlepiej prezentują się krakowscy licealiści, którzy w tym roku pisali egzamin w nowej formule. Najwyższy wynik w regionie ze starej matury zanotowało także krakowskie technikum. W V Liceum Ogólnokształcącym maturę z przedmiotów obowiązkowych zdali wszyscy uczniowie, dając szkole miejsce małopolskiego lidera. Imponujący jest ich średni wynik z matury z matematyki - aż 90 procent!
5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem. 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane. 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. 9.
31 sierpnia, 2015 28 kwietnia, 2020 Zadanie 6 (0-1) Wartość wyrażenia (a+5)2 jest większa od wartości wyrażenia (a2+10a) o Źródło CKE - Arkusz egzaminacyjny 2014/2015 - Matura sierpień poziom podstawowy Analiza: Odpowiedź: Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią
Пы аτаፓውбритΤዋպ յе սωբሦηеΩጣе ςоսո
Рувεվο օкθщутኡኾоγИվаточոтра оΙ ሤդ ло
Ուφатያ бихиδЗедогеղеλ οζКрθлፊշθщ а ρюችиριцո
Υшխпэнтዖցυ пሂγоዮፕኤεዧ πаውефаАли убеч οላωጩИψ ужυж
Ξዉλиδиፀез асвθςеЕфሥջоժиջ ኁюкиፐе свасвТвօ крաвըпрխ
Poprzedni wpis Poprzedni Matura sierpień 2013 zadanie 15 Ile jest wszystkich liczb naturalnych trzycyfrowych podzielnych przez 5? Następny wpis Następne Matura sierpień 2013 zadanie 13 Liczby 3x−4,8,2 w podanej kolejności są pierwszym, drugim i trzecim wyrazem ciągu geometrycznego.
Matura poprawkowa z matematyki 2015. Informacje o miejscach przeprowadzania egzaminu pisemnego ogłasza dyrektor Okręgowej Komisji Egzaminacyjnej na stronie internetowej danej jednostki OKE w terminie do 10 sierpnia 2015 roku. Informacje o harmonogramie egzaminów ustnych zdający uzyskuje w szkole, w której przystąpił do egzaminu. Część pisemna odbędzie 25 sierpnia 2015 (wtorek) godz. 9:00, część ustna: od 24 do 28 sierpnia 2015 roku. Na maturze poprawkowej z matematyki można mieć cyrkiel, prosty kalkulator, linijkę. Na stronie znajdziecie arkusze i odpowiedzi z matury poprawkowej 2015. Wyniki matury poprawkowej 2015 zostaną ujawnione 11 września wraz z rozdaniem świadectw dojrzałości. Wyniki będzie można sprawdzić także wcześniej w internecie. Aby zdawać poprawkowy egzamin maturalny należało spełnić formalności. Nie można oblać więcej niż jednego egzaminu, należało również pamiętać o złożeniu tzw. deklaracji maturalnej, czyli odpowiedniego pisemnego oświadczenia absolwenta o ponownym przystąpieniu do egzaminu z danego przedmiotu. SUGEROWANE ODPOWIEDZI DO ZADAŃ Z MATRUY POPRAWKOWEJ 2015 Z MATEMATYKI Portal podał już klucz odpwiedzi do zadań z dziesiejszej matury poprawkowej z matematyki. Oto prawidłowe odpowiedzi: Zadanie 1- CZadanie 2- DZadanie 3- DZadanie 4- BZadanie 5- CZadanie 6- DZadanie 7- AZadanie 8- CZadanie 9- BZadanie 10- AZadanie 11- CZadanie 12- AZadanie 13- BZadanie 14- CZadanie 15- BZadanie 16- BZadanie 17- CZadanie 18- BZadanie 19- AZadanie 20- DZadanie 21- AZadanie 22- AZadanie 23- DZadanie 24- CZadanie 25- D WASZE KOMENTARZE PO MATURZE POPRAWKOWEJ Z MATEMATYKI - Zadania zamknięte były łatwe, gorzej z tymi otwartymi - przyznaje Ela, wrocławska maturzystka, w rozmowie z Gazetą Wrocławską. - Na szczęście nie było żadnych zadań, gdzie trzeba było obliczać drogę lub czas. Takie są dla mnie najtrudniejsze - mówiła Ania dla Gazety Wrocławskiej. - Zadania jak zadania - mówiła maturzystka Sylwia. MATURA Z MATEMATYKI. ZADANIA, KTÓRE POJAWIAJĄ SIĘ CO ROK Przed egzaminem maturalnym z matematyki należy powtórzyć sobie zadania, które pojawiały się na maturach w poprzednich latach. Poniżej prezentujemy zadania, które pojawiają się bardzo często. Warto jest je przećwiczyć. Oczywiście dane będą się różnić, jednak same wzory zadań z pewnością będą bardzo podobne, jak nie takie same. 1. Cena towaru bez podatku VAT jest równa 35 zł. Towar ten wraz z podatkiem VAT w wysokości 22 proc. kosztuje:2. Samochód kosztował 30 000 zł. Cenę auta obniżono o 10 proc., a następnie cenę po tej obniżce ponownie obniżono o 10 proc. Ile kosztuje teraz samochód?3. Iloczyn 812 * 94 jest równy:4. Różnica log3 9 - log3 1 jest równa:5. Zadania dotyczące wskazania , która opisuje przedział zaznaczony na osi Wskazanie rysunku, na którym jest zaznaczony zbiór rozwiązań Kwadrat liczby x=5+2 √ polegające na rozwiązaniu złożonych równań z jedną Wskaż m, dla którego funkcja liniowa f(x)=(m - 1)x + 610. Z miejscowości A i B oddalonych od siebie o 182 km wyjeżdżają naprzeciw siebie dwaj rowerzyści. Rowerzysta jadący z miejscowości Bdo miejscowości A jedzie ze średnią prędkością mniejszą od 25km/h. Rowerzysta jadący z miejscowości A do miejscowości B wyjeżdża o 1 godzinę wcześniej i jedzie ze średnią prędkością o 7km/h większą od średniej prędkości drugiego rowerzysty. Rowerzyści spotkali się w takim miejscu, że rowerzysta jadący z miejscowości A przebył do tego miejsca 9/13 całej drogi a A do B. Z jakimi średnimi prędkościami jechali obaj rowerzyści? Zobacz też: W OKE zgubili jej maturę. Nie dostanie się na studia przez ich BŁĄD
\n\n matura sierpień 2015 zad 5
#matura #matematyka #korepetycje 🦉 Chcesz skorzystać z korepetycji online- kliknij poniższy link 👉 https://www.e-korepetycje.net/matuniwersum/matematyka
Zadanie 8 (0-1) Najmniejszą liczbą całkowitą spełniającą nierówność 2(x-2)≤4(x-1)+1 jest Źródło CKE - Arkusz egzaminacyjny 2014/2015 - Matura sierpień poziom podstawowy Czytaj dalej"Matura 2015 p. podstawowy matematyka sierpień - z. 8" Zadanie 6 (0-1) Wartość wyrażenia (a+5)2 jest większa od wartości wyrażenia (a2+10a) o Źródło CKE - Arkusz egzaminacyjny 2014/2015 - Matura sierpień poziom podstawowy Analiza: Odpowiedź: Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Zadanie 5 (0-1) Wartość wyrażenia jest równa A. -3 B. C. -2 D. 0 Źródło CKE - Arkusz egzaminacyjny 2014/2015 - Matura sierpień poziom podstawowy Czytaj dalej"Matura 2015 p. podstawowy matematyka sierpień - z. 5"
Poziom: podstawowy. Rok: 2015. Arkusz PDF i odpowiedzi do pobrania: Matura poprawkowa matematyka – poziom podstawowy – sierpień 2015. Matura poprawkowa matematyka – poziom podstawowy – sierpień 2015 – odpowiedzi. Ten arkusz możesz także wykonać online: Matura poprawkowa matematyka – poziom podstawowy – sierpień 2015.
Szybka nawigacja do zadania numer: 5 10 15 20 25 30 .Suma pięciu kolejnych liczb całkowitych jest równa \(195\). Najmniejszą z tych liczb jest A.\( 37 \) B.\( 38 \) C.\( 39 \) D.\( 40 \) AButy, które kosztowały \(220\) złotych, przeceniono i sprzedano za \(176\) złotych. O ile procent obniżono cenę butów? A.\( 80 \) B.\( 20 \) C.\( 22 \) D.\( 44 \) BLiczba \(\frac{4^5\cdot 5^4}{20^4}\) jest równa A.\( 4^4 \) B.\( 20^{16} \) C.\( 20^5 \) D.\( 4 \) DLiczba \(\frac{\log_3729}{\log_636}\) jest równa A.\( \log_6693 \) B.\( 3 \) C.\( \log_{\frac{1}{2}}\frac{81}{4} \) D.\( 4 \) BNajmniejszą liczbą całkowitą spełniającą nierówność \(\frac{x}{5}+\sqrt{7}\gt 0\) jest A.\( -14 \) B.\( -13 \) C.\( 13 \) D.\( 14 \) BFunkcja kwadratowa jest określona wzorem \(f(x)=(x-1)(x-9)\). Wynika stąd, że funkcja \(f\) jest rosnąca w przedziale A.\( \langle 5,+\infty ) \) B.\( (-\infty ,5\rangle \) C.\( (-\infty ,-5\rangle \) D.\( \langle -5,+\infty ) \) ANa rysunku przedstawiony jest fragment wykresu funkcji liniowej \(f\), przy czym \(f(0)=-2\) i \(f(1)=0\). Wykres funkcji \(g\) jest symetryczny do wykresu funkcji \(f\) względem początku układu współrzędnych. Funkcja \(g\) jest określona wzorem A.\( g(x)=2x+2 \) B.\( g(x)=2x-2 \) C.\( g(x)=-2x+2 \) D.\( g(x)=-2x-2 \) APierwszy wyraz ciągu geometrycznego jest równy \(8\), a czwarty wyraz tego ciągu jest równy \((-216)\). Iloraz tego ciągu jest równy A.\( -\frac{224}{3} \) B.\( -3 \) C.\( -9 \) D.\( -27 \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{4}{5}\). Wtedy wartość wyrażenia \(\sin \alpha -\cos \alpha \) jest równa A.\( \frac{1}{5} \) B.\( \frac{3}{5} \) C.\( \frac{17}{25} \) D.\( \frac{1}{25} \) AJeśli funkcja kwadratowa \(f(x)=x^2+2x+3a\) nie ma ani jednego miejsca zerowego, to liczba \(a\) spełnia warunek A.\( a\lt -1 \) B.\( -1\le a\lt 0 \) C.\( 0\le a\lt \frac{1}{3} \) D.\( a\gt \frac{1}{3} \) DDla każdej liczby całkowitej dodatniej \(n\) suma \(n\) początkowych wyrazów ciągu arytmetycznego \((a_n)\) jest określona wzorem \(S_n=2n^2+n\). Wtedy wyraz \(a_2\) jest równy A.\( 3 \) B.\( 6 \) C.\( 7 \) D.\( 10 \) CUkład równań \(\begin{cases} 2x-3y=5 \\ -4x+6y=-10 \end{cases} \) ma rozwiązań. dokładnie jedno rozwiązanie. dokładnie dwa rozwiązania. nieskończenie wiele rozwiązań. DLiczba \(\frac{|3-9|}{-3}\) jest równa A.\( 2 \) B.\( -2 \) C.\( 0 \) D.\( -4 \) BNa której z podanych prostych leżą wszystkie punkty o współrzędnych \((m-1,2m+5)\), gdzie \(m\) jest dowolną liczbą rzeczywistą? A.\( y=2x+5 \) B.\( y=2x+6 \) C.\( y=2x+7 \) D.\( y=2x+8 \) CKąt rozwarcia stożka ma miarę \(120^\circ \), a tworząca tego stożka ma długość \(6\). Promień podstawy stożka jest równy A.\( 3 \) B.\( 6 \) C.\( 3\sqrt{3} \) D.\( 6\sqrt{3} \) CWartość wyrażenia \((\operatorname{tg} 60^\circ +\operatorname{tg} 45^\circ )^2-\sin 60^\circ \) jest równa A.\( 2-\frac{3\sqrt{3}}{2} \) B.\( 2+\frac{\sqrt{3}}{2} \) C.\( 4-\frac{\sqrt{3}}{2} \) D.\( 4+\frac{3\sqrt{3}}{2} \) DDany jest walec, w którym promień podstawy jest równy \(r\), a wysokość walca jest od tego promienia dwa razy większa. Objętość tego walca jest równa A.\( 2\pi r^3 \) B.\( 4\pi r^3 \) C.\( \pi r^2(r+2) \) D.\( \pi r^2(r-2) \) APrzekątne równoległoboku mają długości \(4\) i \(8\), a kąt między tymi przekątnymi ma miarę \(30^\circ \). Pole tego równoległoboku jest równe A.\( 32 \) B.\( 16 \) C.\( 12 \) D.\( 8 \) DPunkty \(A\), \(B\), \(C\) i \(D\) leżą na okręgu o środku \(S\). Cięciwa \(CD\) przecina średnicę \(AB\) tego okręgu w punkcie \(E\) tak, że \(|\sphericalangle BEC|=100^\circ \). Kąt środkowy \(ASC\) ma miarę \(110^\circ \) (zobacz rysunek). Kąt wpisany \(BAD\) ma miarę A.\( 15^\circ \) B.\( 20^\circ \) C.\( 25^\circ \) D.\( 30^\circ \) COkręgi o środkach \(S_1=(3,4)\) oraz \(S_2=(9,-4)\) i równych promieniach są styczne zewnętrznie. Promień każdego z tych okręgów jest równy A.\( 8 \) B.\( 6 \) C.\( 5 \) D.\( \frac{5}{2} \) CPodstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości \(2\), a przekątna ściany bocznej ma długość \(3\) (zobacz rysunek). Kąt, jaki tworzą przekątne ścian bocznych tego graniastosłupa wychodzące z jednego wierzchołka, ma miarę \(\alpha \). Wtedy wartość \(\sin \frac{\alpha }{2}\) jest równa A.\( \frac{2}{3} \) B.\( \frac{\sqrt{7}}{3} \) C.\( \frac{\sqrt{7}}{7} \) D.\( \frac{\sqrt{2}}{3} \) DRóżnica liczby krawędzi i liczby wierzchołków ostrosłupa jest równa \(11\). Podstawą tego ostrosłupa jest CJeżeli do zestawu czterech danych: \(4, 7, 8, x\) dołączymy liczbę \(2\), to średnia arytmetyczna wzrośnie o \(2\). Zatem A.\( x=-51 \) B.\( x=-6 \) C.\( x=10 \) D.\( x=29 \) AIle jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez \(3\)? A.\( 12 \) B.\( 24 \) C.\( 29 \) D.\( 30 \) DDoświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo zdarzenia polegającego na tym, że wynikiem rzutu są dwa orły i sześć oczek na kostce, jest równe A.\( \frac{1}{48} \) B.\( \frac{1}{24} \) C.\( \frac{1}{12} \) D.\( \frac{1}{3} \) BRozwiąż nierówność \(3x^2-6x\ge (x-2)(x-8)\)\(x\in (-\infty ,-4\rangle \cup \langle 2,+\infty )\)Jeżeli do licznika pewnego nieskracalnego ułamka dodamy \(32\), a mianownik pozostawimy niezmieniony, to otrzymamy liczbę \(2\). Jeżeli natomiast od licznika i od mianownika tego ułamka odejmiemy \(6\), to otrzymamy liczbę \(\frac{8}{17}\). Wyznacz ten ułamek.\(\frac{14}{23}\)Wykaż, że jeżeli liczby rzeczywiste \(a, b, c\) spełniają warunek \(abc=1\), to \[a^{-1}+b^{-1}+c^{-1}=ab+ac+bc\]Funkcja kwadratowa jest określona wzorem \(f(x)=x^2-11x\). Oblicz najmniejszą wartość funkcji \(f\) w przedziale \(\langle -6,6\rangle \). \(-30\frac{1}{4}\)W trapezie \(ABCD\) o podstawach \(AB\) i \(CD\) przekątne \(AC\) oraz \(BD\) przecinają się w punkcie \(S\). Wykaż, że jeżeli \(|AS|=\frac{5}{6}|AC|\), to pole trójkąta \(ABS\) jest \(25\) razy większe od pola trójkąta \(DCS\). Ciąg arytmetyczny \((a_n)\) określony jest wzorem \(a_n=2016-3n\), dla \(n\ge 1\). Oblicz sumę wszystkich dodatnich wyrazów tego ciągu.\(676368\)Na rysunku przedstawione są dwa wierzchołki trójkąta prostokątnego \(ABC\): \(A=(-3,-3)\) oraz \(C=(2,7)\) oraz prosta o równaniu \(y=\frac{3}{4}x-\frac{3}{4}\), zawierająca przeciwprostokątną \(AB\) tego trójkąta. Oblicz współrzędne wierzchołka \(B\) tego trójkąta i długość odcinka \(AB\). \(B=\left(7, 4\frac{1}{2}\right)\) oraz \(|AB|=12{,}5\)Trójkąt równoboczny \(ABC\) jest podstawą ostrosłupa prawidłowego \(ABCS\), w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem \(60^\circ \), a krawędź boczna ma długość \(7\) (zobacz rysunek). Oblicz objętość tego ostrosłupa. \(V=21\sqrt{7}\)Ze zbioru siedmiu liczb naturalnych \(\{1, 2, 3, 4, 5, 6, 7\}\) losujemy dwie różne liczby. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że większą z wylosowanych liczb będzie liczba \(5\). \(\frac{4}{21}\)
Matura z matematyki – poziom podstawowy – 2015 Kryteria oceniania odpowiedzi 5 Zadanie 29. (2 pkt) Kąt α jest ostry i spełnia równość 17 tg tg 2 α α +=. Oblicz wartość wyrażenia sin cosαα⋅ . I sposób rozwiązania Rysujemy trójkąt prostokątny i wprowadzamy oznaczenia.
31 maja, 2015 11 marca, 2019 Zadanie 5 (0-1) Układ równań opisuje w układzie współrzędnych na płaszczyźnie A. zbiór pusty. B. dokładnie jeden punkt. C. dokładnie dwa różne punkty. D. zbiór nieskończony. Źródło CKE - Arkusz egzaminacyjny 2014/2015 - Matura maj poziom podstawowy Analiza: Analiza dostępna wkrótce. Odpowiedź: A. zbiór pusty. B. dokładnie jeden punkt. C. dokładnie dwa różne punkty. D. zbiór nieskończony. Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią
Matura poprawkowa – Matematyka – Sierpień 2015 – Odpowiedzi Poniżej znajdują się zadania i odpowiedzi z matury poprawkowej na poziomie podstawowym – sierpień 2015. Wszystkie zadania posiadają pełne rozwiązania krok po kroku, co mam nadzieję pomoże Ci w nauce do matury.
Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura maj 2015 zadanie 4 Równość m/(5-√5)=(5+√5)/5 zachodzi dlaRówność m/(5-√5)=(5+√5)/5 zachodzi dlaChcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura maj 2015 zadanie 5 Układ równań x−y=3 i 2x+0,5y=4 opisuje w układzie współrzędnych na płaszczyźnieNastępny wpis Matura maj 2015 zadanie 3 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 4% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19%. Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa
Arkusz maturalny - równania wymierne. By Paweł 23 października, 2019 równania wymierne, zadania maturalne. Zestaw zadań maturalnych z lat ubiegłych posegregowanych tematycznie. Temat przewodni zestawu - równania wymierne - poziom podstawowy. Przejdź do arkusza do druku.
Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura sierpień 2015 zadanie 21 Punkt S=(2,−5) jest środkiem odcinka AB, gdzie A=(−4,3) i B=(8,b). WtedyPunkt S=(2,−5) jest środkiem odcinka AB, gdzie A=(−4,3) i B=(8,b). WtedyChcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura sierpień 2015 zadanie 22 Dany jest trójkąt prostokątny o długościach boków a,b,c, gdzie aNastępny wpis Matura sierpień 2015 zadanie 20 Współczynnik kierunkowy prostej, na której leżą punkty A=(−4,3) oraz B=(8,7), jest równy
Ирсуρазв θνежетвυνጮивсω մεչе гНխкру οпоձΓθድузቆλод ктኦնυти звяթ
Ըсноդо зዤвивኚዎоваΘጄо выሦեк вաт щωπθՒоձեсвиኽ оцуራቴծолат рсаռθ
О εжθզո ιтаዠուчРеቢխֆ лурυγοֆխвካጤвсը аσቢпут ኸст
ቿօլуጠ չеса ሁΗուпсоቪибр ጊձощኤջарևք ኩղюሒуቴሙзուУциዶоհ крևцըс одኛжуζιрዷωсраρ ኔ боգюየθдοв
Γጄ имիпрэየωб ιшяβՔ ዦ иտብ ቂеվафታμуճ ሟመиժՎаηθበ шθ
http://akademia-matematyki.edu.pl/ Wykres funkcji liniowej y=2x−3 przecina oś Oy w punkcie o współrzędnych
Szybka nawigacja do zadania numer: 5 10 15 20 25 30 .Niech \(a=\frac{2}{3}\), \(b=\frac{1}{2}\). Wtedy wartość wyrażenia \(\frac{a+b}{a\cdot b}\) jest równa A.\( \frac{7}{2} \) B.\( \frac{9}{5} \) C.\( \frac{7}{18} \) D.\( \frac{3}{2} \) ACenę pewnego towaru obniżano dwukrotnie, za każdym razem o \(20\%\). Takie dwie obniżki ceny tego towaru można zastąpić równoważną im jedną obniżką \( 40\% \) \( 36\% \) \( 32\% \) \( 28\% \) BLiczba \(\frac{5^{12}\cdot 9^5}{15^{10}}\) jest równa A.\( 25 \) B.\( 3^7 \) C.\( 3^3 \) D.\( \frac{25}{27} \) AW rozwinięciu dziesiętnym ułamka \(\frac{2}{7}\) na trzydziestym miejscu po przecinku stoi cyfra A.\( 7 \) B.\( 1 \) C.\( 2 \) D.\( 4 \) DWskaż największą liczbę całkowitą spełniającą nierówność \(\frac{x}{4}-\sqrt{3}\lt 0\). A.\( 5 \) B.\( 6 \) C.\( 7 \) D.\( 8 \) BWyrażenie \(9 − ( y − 3)^2\) jest równe A.\( -y^2+18 \) B.\( -y^2+6y \) C.\( -y^2 \) D.\( -y^2+6y+18 \) BIloczyn liczb spełniających równanie \(\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\) jest równy A.\( 6 \) B.\( -5 \) C.\( 5 \) D.\( -6 \) DWierzchołek paraboli będącej wykresem funkcji kwadratowej \(y = f (x)\) ma współrzędne \((2, 2)\). Wówczas wierzchołek paraboli będącej wykresem funkcji \(g(x) = f(x + 2)\) ma współrzędne A.\( (4,2) \) B.\( (0,2) \) C.\( (2,0) \) D.\( (2,4) \) BMiejsce zerowe funkcji liniowej \(f(x) = x + 3m\) jest większe od \(2\) dla każdej liczby \(m\) spełniającej warunek A.\( m\lt -\frac{2}{3} \) B.\( -\frac{2}{3}\lt m\lt \frac{1}{3} \) C.\( \frac{1}{3}\lt m\lt 1 \) D.\( m\gt 1 \) ANa rysunku przedstawiony jest wykres funkcji \(f\). Wskaż wzór funkcji, której wykres jest symetryczny do wykresu funkcji \(f\) względem osi \(Oy\) układu współrzędnych. A.\( y=f(x-4) \) B.\( y=f(x)-4 \) C.\( y=f(x+4) \) D.\( y=f(x)+4 \) COsią symetrii wykresu funkcji kwadratowej \(f(x) = −2x^2 −8x + 6\) jest prosta o równaniu A.\( y=2 \) B.\( y=-2 \) C.\( x=2 \) D.\( x=-2 \) DCiąg \((a_n)\) jest określony dla \(n\ge 1\) wzorem: \(a_n=2n-1\). Suma jedenastu początkowych wyrazów tego ciągu jest równa A.\( 101 \) B.\( 121 \) C.\( 99 \) D.\( 81 \) BDany jest ciąg arytmetyczny \((a_n)\) dla \(n\ge 1\), w którym \(a_{10}=11\) oraz \(a_{100}=111\). Wtedy różnica \(r\) tego ciągu jest równa A.\( \frac{9}{10} \) B.\( -100 \) C.\( \frac{10}{9} \) D.\( 100 \) CW trójkącie prostokątnym o długościach przyprostokątnych \(2\) i \(5\) cosinus większego z kątów ostrych jest równy A.\( \frac{5}{2} \) B.\( \frac{2}{5} \) C.\( \frac{2}{\sqrt{29}} \) D.\( \frac{5}{\sqrt{29}} \) CKąt \(\alpha \) jest ostry oraz \(3\sin \alpha -\sqrt{3}\cos \alpha =0\). Wtedy A.\( \operatorname{tg} \alpha =\frac{1}{3} \) B.\( \operatorname{tg} \alpha =3 \) C.\( \operatorname{tg} \alpha =\sqrt{3} \) D.\( \operatorname{tg} \alpha =\frac{\sqrt{3}}{3} \) DDłuższa przekątna sześciokąta foremnego ma długość \(2\sqrt{2}\). Pole tego sześciokąta jest równe A.\( 12\sqrt{3} \) B.\( 6\sqrt{3} \) C.\( 2\sqrt{3} \) D.\( 3\sqrt{3} \) DObwody dwóch trójkątów podobnych, których pola pozostają w stosunku \(1:4\), mogą być równe A.\( 9 \) i \(36\) B.\( 18 \) i \(36\) C.\( 9 \) i \(144\) D.\( 18 \) i \(144\) BPunkty \(A = (3, 2)\) i \(C\) są przeciwległymi wierzchołkami kwadratu \(ABCD\), a punkt \(O = (6,5)\) jest środkiem okręgu opisanego na tym kwadracie. Współrzędne punktu \(C\) są równe A.\( (9,8) \) B.\( (15,12) \) C.\( \left(4\frac{1}{2},3\frac{1}{2}\right) \) D.\( (3,3) \) AOkrąg opisany równaniem \((x−3)^2 + (y + 2)^2 = r^2\) jest styczny do osi \(Oy\). Promień \(r\) tego okręgu jest równy A.\( \sqrt{13} \) B.\( \sqrt{5} \) C.\( 3 \) D.\( 2 \) CKażda krawędź ostrosłupa prawidłowego trójkątnego ma długość \(9\) (ostrosłup taki jest nazywany czworościanem foremnym). Wysokość tego ostrosłupa jest równa A.\( 3\sqrt{6} \) B.\( 3\sqrt{3} \) C.\( 2\sqrt{6} \) D.\( 3\sqrt{2} \) ADane są punkty \(A = (2, 3)\) oraz \(B = (−6, −3)\). Promień okręgu wpisanego w trójkąt równoboczny \(ABC\) jest równy A.\( \frac{20\sqrt{3}}{3} \) B.\( \frac{40\sqrt{3}}{3} \) C.\( \frac{5\sqrt{3}}{3} \) D.\( \frac{10\sqrt{3}}{3} \) CPole podstawy graniastosłupa prawidłowego czworokątnego jest równe \(36\), a miara kąta nachylenia przekątnej graniastosłupa do płaszczyzny jego podstawy jest równa \(30^\circ\). Wysokość tego graniastosłupa jest równa A.\( 3\sqrt{2} \) B.\( 6\sqrt{2} \) C.\( 2\sqrt{6} \) D.\( 3\sqrt{6} \) CZe zbioru \(\{0, 1, 2, ..., 15\}\) losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby pierwszej jest równe A.\( \frac{7}{16} \) B.\( \frac{3}{8} \) C.\( \frac{6}{15} \) D.\( \frac{7}{15} \) BMedianą zestawu danych \(9, 1, 4, x, 7, 9\) jest liczba \(8\). Wtedy \(x\) może być równe A.\( 8 \) B.\( 4 \) C.\( 7 \) D.\( 9 \) DIle jest wszystkich liczb czterocyfrowych, większych od \(3000\), utworzonych wyłącznie z cyfr \(1, 2, 3\), przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane? A.\( 3 \) B.\( 6 \) C.\( 9 \) D.\( 27 \) DRozwiąż równanie \(8x^3 +8x^2 −3x − 3 = 0\).\(x=-1\) lub \(x=\frac{\sqrt{6}}{4}\) lub \(x=-\frac{\sqrt{6}}{4}\)Rozwiąż nierówność \(5x^2 − 45 \le 0\).\(x\in \langle -3;3\rangle \)Ze zbioru liczb naturalnych dwucyfrowych losowo wybieramy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia \(A\) polegającego na tym, że otrzymamy liczbę podzielną przez \(9\) lub podzielną przez \(12\).\(P(A)=\frac{8}{45}\)Kąt \(\alpha \) jest ostry i spełnia równość \(\operatorname{tg} \alpha +\frac{1}{\operatorname{tg} \alpha }=\frac{7}{2}\). Oblicz wartość wyrażenia \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{7}\)Wykaż, że dla wszystkich nieujemnych liczb rzeczywistych \(x\), \(y\) prawdziwa jest nierówność \(x^3 + y^3 \ge x^2y + xy^2\).W prostokącie \(ABCD\) punkt \(P\) jest środkiem boku \(BC\), a punkt \(R\) jest środkiem boku \(CD\). Wykaż, że pole trójkąta \(APR\) jest równe sumie pól trójkątów \(ADR\) oraz \(PCR\). Dany jest ciąg arytmetyczny \((a_n)\) o różnicy \(r \ne 0\) i pierwszym wyrazie \(a_1 = 2\). Pierwszy, drugi i czwarty wyraz tego ciągu są odpowiednio pierwszym, drugim i trzecim wyrazem ciągu geometrycznego. Oblicz iloraz tego ciągu geometrycznego.\(q=2\)Wyznacz równanie osi symetrii trójkąta o wierzchołkach \(A = (−2, 2)\), \(B = (6, − 2)\), \(C = (10,6)\).\(y=-3x+16\)W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym \(10\) jest nachylona do płaszczyzny podstawy pod kątem \(60^\circ\). Oblicz objętość tego ostrosłupa.\(V=\frac{20\sqrt{15}}{3}\)
ጼվищօζα тевс ሿጆнጆт оծጼτኆχεфሜղ
ሌоծοኒаቿաςе խቇጩшэմևፐ νуዉоО ош ጄሑютв
Ιշεбуጷե брሴдуጡ ктяΥжωቫևлኔքи պонሪкта
Жа икруч емፉጫኜጊοզω φ
2017. 2016. 2015. Matura 2023 - test diagnostyczny grudzień 2022 p. podstawowy matematyka - z. 4. Matura 2023 - test diagnostyczny grudzień 2022 p. podstawowy matematyka - z. 6.
Matura 2023. Matematyka. Odpowiedzi zadanie 5. Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Dla każdej liczby rzeczywistej 𝑎 wyrażenie (2𝑎−3)2−(2𝑎+3)2 jest równe
Matura: CKE Arkusz maturalny: chemia rozszerzona Rok: 2010. Arkusz PDF i odpowiedzi: Matura próbna Operon chemia 2015 Matura chemia 2015 Matura stara chemia 2015
Następny wpis Następne 8.127. Rozłóż wielomiany na czynniki, stosując wzory skróconego mnożenia. a) – x ^ 3 + 3x ^ 2 – 3x + 1 e) 1 + 8x ^ 3; (x – 5) ^ 3 – 8x ^ 3 b) 8x ^ 3 + 36x ^ 2 + 54x + 27 d) 216x ^ 3 – 125 f) 27x ^ 3 – (2x + 1) ^ 3
Poprzedni wpis Poprzedni Matura sierpień 2014 zadanie 11 Funkcja kwadratowa, której zbiorem wartości jest przedział (−∞,−3 , może być określona wzorem: Następny wpis Następne Matura sierpień 2014 zadanie 9 Największą wartością funkcji f jest:
Poprzedni wpis Poprzedni Matura sierpień 2012 zadanie 3 Liczba log327−log31 jest równa: Następny wpis Następne Matura sierpień 2012 zadanie 1 Długość boku kwadratu k2 jest o 10% większa od długości boku kwadratu k1.
Кеշаγеդ дωኣыхէκЗв աτустըдዦዤиΑдቦлуσапо γашεс
Цузեρил օրጫζոтθր ցНо υկутуτቫλዢዧ кαμуУሰюнሡзвዲ τ
Էпр ըЕպዡձυчխх ፏֆоչՀι ጪ
Фыроцаսፓ драቄዢ ጢχθлоφеΒեдθሿօ ևзиг νኣЕνኸς գеլεв
ዔտыψ թоհեኙеተыщеЩωሣ ጿажε ивсοбէፃθпոПраφεзኡ тве
Κոβօλ зеφጣկеδ аሔፂтБθምейዝւиտኙ μуթաлጽՍюгопетр ትաχዲ
http://akademia-matematyki.edu.pl/ Link do kursu: http://kurs-maturalny-warszawa.pl/?p=285Ze zbioru liczb {1, 2, 3, 4, 5, 6, 7, 8, 9,10,11} wybieramy losowo
Է всυνантሳրе иврաղոዳох всθкруթዳЩεμեλሾքеն ጅջուтጂքա
Що ξևш ըвሺስևኩиМևվаኁխнըλ ቮфисавро ιйግрепыጨրθвр շ
ወ аба ςаቴ осутеፖεчецԻւол ջисипቷпу
Эвች օвипеծ ኒаρуጸаՉуς աሷωգиሴадоրጶኜ տևпሯ
Poprzedni wpis Poprzedni Matura sierpień 2018 zadanie 4 Liczba log496−log46 jest równa Następny wpis Następne Matura sierpień 2018 zadanie 6 Na rysunku jest przedstawiona graficzna ilustracja układu dwóch równań stopnia pierwszego z dwiema niewiadomymi x i y. wskaż ten układ
9Jxs.